
AO AObII LI? COMMAND AND CONTROl. TECHNICAL. CCP4TER WASHINGTON 0 C Ffl On
GUIDCLINCS FOR STRUCTUR(D COOI NG.C U)
SIP 76 . IRSCOTT

UNCLASSIFIED CCTC—TM—IU—?S SSIC-1L0015? Ni.

__

I
_ _ _ _ _ _

_ IN!
_

__

I f~
k~ ~~~ ~ 2.5

I.V L

~ ~ lIIII~
LI L IlIO~

IIIII~Hill’ ~ lllIl~ ~
MICROCOPY RESOLUTION TES T CHART

NATIONAL BUREAU OE STANDARDS %3 A

TECHNICAL MEMORANDUM

‘* / . TM 18548
1 SEPTEMBER 1878

c
T

COMMAND
& CONTROL
TEcHNICAL
CENTER

GUIDELINES FOR
~uJ

STRUCTURED ~~~~

~~~‘D D CDEFENSE 
_ _ _ _ _ _COMMUNICATIONS iO~~ 6 ~ I9

AGENCY 
V~~~~~~~u ~

F~ mts DOCUMENT HAS lEEK I
1 APPROVED FOR PUILIC I
I RELEASE AND SALE : ITS I

DISTRI$UTION IS UNLIMITED 
~J

_ _ _  _ _ _  

‘

~~~~~~ 79 01 ‘02 011
~~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _

n ~~~~~~ - — - ~~~



COMMAND AND CONTROL TECHNICAL CENTER

ech~~c~~ ~~ an~~ 1~~
T

~~ TM 185_78
1 Sep J 78 -

~~ 
(
~~j ~J

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(~~~~~~~~~~~J

PREPARE D ~ REVIEWED BY:

N • COTP CHARLES W. DURIEUXpta n Technical Supportroject OfXicer Office

APPROVED BY;

e £ 7 ~~~-~’&, E, MORRISS D C

Approved for public release; distribution unlimited.
Copies of this document may be obtained from the Defense
Documentation Center , Cameron Station, Alexandria,
Virginia 22314.

-
____ _ _ _ _

_ _ _ _ _ _ _ _

-
~

~~~~~~~~~~~~~~ ~~~~~~~~~~~
•
~~

* 
~~~~~~~~~~~~ -


ACKNOWLEDGMENT

These guidelines are an abridgement of the guidelines
produce d for the US Air Force Rome Air Development
Center by the IBM Corporation under contract
F30602—74—C—O].86.

~~CCES.~
NTIS

C

.

~

ii

-

—

~~~~~~~~~~~~~
- - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~



7

CONTENTS

Section Page

ACKNOWLEDGMENT  ii

ABSTRACT vi

1. INTRODUCTION 1-1

2. FUNDAMENTAL S (BAcKGROUND) 2-1

2.1 Structure Theorem 2— 1
2 .2  Basic Control Structures 2-i
2 .3  Additional Control Structures 2-4

3. GENERAL GUIDELINES 3-1
3.1 Introduction 3— 1
3.2 Precompi].ers .3—1
3.3 Language Independent Guidelines . .   3-2
3.4 Language Dependent Guidelines 3-3

4. LANGUAGE DEPENDENT GUIDELINES 4-1

4.1 Introduction 4—1
4.2 ANS FORTRAN 4—1
4.2.1 General Comments  4—1
4.2.2 Structured Coding in ANS FORTRAN   4-2
4.2.2.1 IFTHENELSE Figure 4—3
4.2.2.2 DO Figures 4—5
4.2.2.2.1 DOWHILE  4—5
4.2.2.2.2 DOUNTIL  4—6
4.2.2.2.3 The FORTRAN DO 4—7

4.2.2.3 CASE Figure 4—7
4.2.2.4 INCLUDE Capability 4—9

4.2.3 Additional Recommended Coding
Conventions 4-11

4.2.3.1 Restricted FORTRAN Statement
Usage 4—li

4.2.3.2 Program Organization 4-11
4.2.3.3 Comments 4—13
4.2.3.4 Statement Numbering  4—13
4.2.3.5 Continuation Cards 4-13
4.2.3.6 Statements . . .  4—13
4.2.3.6.1 Assignment Statements .   4—14
4.2.3.6.2 COMMON Statements 4—14
4.2.3.6.3 Type Statements  4—14

iii

- — — ~- .. . ~- .
-.-— I

— ~~_ • ~~~~~~~~ 

I 
L.. -~ 

I 
~~~~ 

-~~

Section .

4.2.3.6.4 FORMAT Statements 4-14
4.2.3.6.5 READ or WRITE Statements 4-15
4.2.3.6.6 IF Statements 4-15
4.2.3.6.7 DATA Statements 4-16

4.3 .ANSI COBOL 4—16
4.3.1 General Comments 4-16
4.3.2 Top Down Structured Programming

in ANS COBOL 4-19
4.3.2.1 IFTHENELSE Figure 4-19
4.3.2.2 DO Figures 4—23
4.3.2.2.1 DOWHILE 4—23
4.3.2.2.2 DOUNTIL 4—24

4.3.2.3 CASE Figure 4-25
4.3.2.4 INCLUDE Capability 4-27

4.3.3 Additional Recommended Coding
Conventions 4-28

4.3.3.1 Restricted ABS COBOL Statement
Usage 4—28

4.3.3.2 Program Organization 4-28
4 .3 .3~ 3 Comments 4—29
4 .3 . 3 . 4 Indentation and Formatting

Conventions 4—29

REFERENCES . 5—1

DISTRIBUTION 6— 1

DD FORM 1473 7—1

iv

- - - -~~~ ‘ I
-

•1

ILLUSTRATIONS

Figure Page

2-1 Flowchart for the Control Logic
Structure Sequence 2-1

2-2 Flowchart for the Control Logic
Structure Selection 2-2

2-3 Flowchart for the Control Logic
Structure Iteration, the DOWBILE . . 2-3

2-4 An Example of the Combination of
Two Control Logic Structures, in
which the Function Controlled by
a DOWHILE is an IFTHENELSE 2-4

2-5 Flowchart for the Control Logic
Structure Iteration, the DOUNTIL . 2-5

2-6 Flowchart for the CASE Control
Logic Structure 2—6

‘ 1 1E
l!

U,.

O 1 i ~~~.
— ~~r1i ’.,. ~-L.. ~~~~~~~~~~~~~~ s .-.. ~~~~ .,.. ~~~~~~~~~~~~~~ ~i~~i~ :’— IL

‘II

I I \~

ABSTRACT

This manual provides guidelines for DCA/CCTC personnel
writing computer programs using structured code. The
guidelines are for handcoding of structured constructs
in FORTRAN and COBOL, with additional instructions on
module sizing and formatting.

I’

H t
_ _ .

~~~~~~~~~~~~~~~~~~~~ 

_ _ _

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~



(

SECTION 1. INTRODUCTION

The purpose of this manual is to provide guidelines for
writing structured code within CCTC. These guidelines will /
provide CCTC project officers guidance for implementing
structured coding using existing tools and techniques. .— I t  ( 

~~~
.

is felt that publication of guidelines at this time will
serve to encourage experiments with this technology and will
serve to standardize CCTC ’s approach. However , standardiza-
tion is a secondary objective , since it is felt experience
with these guidelines will allow CCTC to develop practical
standards. Users of these guidelines are encouraged to
provide comments to the Technical Support Office (CllO),
CCTC, Room BE685, The Pentagon, Washington , D.C. 20301.

_ _ _ _ _ _ _ -

1-1

~~

—.
, i__~~. ~~ -

. ..
~

— .

(

SECTION 2. FUN DAMENTALS (BACKGROUND)

Structured coding is one of a large number of techniques
which have evolved along with the concept of software engi-
neering. Structured coding is not structured . programming
since structured programming is a label assigned to a series
of software elorment tethniques. Strtrtured coding is the part
of structured programming which has found almost universal
acceptance by users of newer software development method-
ol gies.

2. 1 Structure Theorem

Structured coding is based upon the mathematically proven
structure theorem which states that a proper program is one
that meets the following requirements :

a. It has exactly one entry point and exactly one exit
point for program control.

b. There are paths from the entry to the exit that lead
through every part of the program; this means that
there are no inf in ite loops and no unreachable code.
This requirement is, of course , no restriction , I~~tsimply a statement that the structure theorem applies
only to meaningful programs.

2.2 Basic Control Structures

The three basic control logic structures are defined as
follows :

a. Sequence is simply a formalization of the idea that
unless otherwise stated , program statements are
executed in the order in which they appear in the
program . This is true of all commonly used program-
ming languages; it is not always realized that sequence
is in fact a control logic structure . In flowchart
terms , sequence is represented by one function after

I
;

the other , as shown in figure 2-1.

A l B __

Figure 2-1. Flowchart for the Control Logic Structure
Sequence

2-1

—v —i-

~~~I~”~’



•1

A and B are anything from single statements up to complete
modules; the concern is only with the abstract idea of a
proper program , regardless of its size and internal complexity .
A and B must both be proper programs in the sense just  defined
(one entry and one exit) . The combination of A followed by B
is also a proper program , since it too has one entry and one
exit.

Selection is the choice between two actions based on a
predicate ; this is called the IFTHENELSE structure. The
usual flowchart notation for selection is shown in figure 2-2 ,
where p is the predicate and A and B are the two functions.

A
I

P
F

B

Figure 2-2. Flowchart for the Control Logic Structure Selection

The iteration structure, used for repeated execution of code
wh ile a condition is true (also called loop control ), is
the DOWHILE. In the flowchart in figure 2-3, p is the predicate
and A is the controlled code.

2—2 

___ ~_~_[ ~
4 .— -. * —. ‘- 5I.ff&.~~ ~~~~~~ 4



Figure 2-3. Flowchart for the Control Logic Structure
Iteration, the DOWHILE

A fundamental idea is that anywhere a function box appears ,
any of the three basic structures may be substituted and still
have a proper program. For example, the function box in
figure 2-3 could be replaced with selection , producing the
flowchart of figure 2-4. The dotted lines show where another
structure has been substituted for a function. Flowcharts of
arbitrary complexity can be built up in this way .

2—3

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
.

~~~~~~~~~~~~~~~~~~~~~~ .~~~,



IT K F

Figure 2-4. An Example of the Combination of Two Control
Logic Structures , in which the Function
Controlled by a DOWHILE is an IFTHENELSE

The ability to substitute control logic structures for
functions and still have a proper program is basic to
structured coding. This may also be called the nesting
of structures.

2.3 Additional Control Structures

Although all programs can be writ ten using only the three
basic structures, it is sometimes help ful  to ut i l ize  a few
others.

The basic iteration structure is the DOWHILE , but there is
a closely related structure , DOUNTIL , that is sometimes used ,
depending on the procedure that is to be expressed and on
availabil i ty of appropriate language features.  The f low—
chart is shown in figure 2-5.

2—4

T 
~~~ I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~ 
- 

_ _



The difference between the DOWHILE and DOUNTIL structures is
that with the DOWHILE the predicate is tested before executing
the function; if the predicate is false , the function is not
executed at all. With the DOUNTIL, the predicate is tested
after executing the function; the function will always be
executed at least once , regardless of whether the predicate
is true or false.

Figure 2-5. Flowchart for the Control Logic Structure
Iteration , the DOUNTIL

It is sometimes helpful — from both readability and efficiency
standpoints - to have some way to express a mu.ltiway branch ,
commonly referred to as the CASE structure. For example ,
if it is necessary to execute appropriate routines based on
a 2-digit decimal code, it certainly is possible to write
100 IF statements, or a compound statement with 99 ELSE IFs
but common sense suggests that there is no reason to adhere
so rigidly to the three basic structures.

The CASE structure uses the value of a variable to determine
which of several routines is to be executed. The flowchart
is shown in f igure 2-6. Observe that DOIJNTIL and CASE are both
proper programs.

2—5

-~~~~ 

- —
‘ 4 •4~~~~~~~~~~~~~~~~~~~~~~~~ • •

~~~~~~~~~~~~~~ 
T’~~~I~ TT ~~~

-

F 1

Figure 2-6. Flowchart for the CASE Control Logic Structure

2—6

— — .— .—. - — — —-—---——---— .
T~

-

I.,

SECTION 3. GENERAL GUIDELINES

3.1 Introduction

Guidelines for structured coding which are language inde-
pendent are presented in this section . These guidelines are
recommendations which would be considered by project managers .
However, deviation will occasionally be required to satisfy
unique project requirements.

Four approaches are possible when developing structured
coding for existing nonstructured languages . The techniques
are:

a. Use those structuring capabilities which are present
in the language .

b. Simulate structuring capabilities using the features
of the language including the unconditional branch
and the commenting features , as necessary.

c. Use a precompiler to translate top down structured
code into the target high level language source
code .

d. Modify the language syntax to include the necessary
structuring features and make these modifications a
part of the language compiler.

In this manual a combination of techniques a. and
b. above is used to define standards and guidelines
for each language . Precompilers are available in CCTC
for COBOL an d FORTRAN , but their use should be
considered only after examination of their impact on
future developments . The last possibility, that of
modifying the language s , is a long range objective
and is not addressed.

3.2 Precompilers

A structured precompiler is a computer program which accepts
programs containing structures not native to a language and
produces output which is acceptable to the language’s compiler.
By using a precompiler , it is possible to implement structured
coding by directly coding the structured constructs and
eliminating the error prone process of manually translating
the structured constructs . In addition to time savings , a
precompiler also provides compliance checking . A precompiler ’ s

3 -l

- -.-
~~~~~~~

—-—- -- - 
~~~~~~~~~~ 

- -

~~~~~~~ 

. - ..—-

.-



-

principal disadvantage is the lack of standards for the
input language. This means that th~ user of a precompiler
must depend upon the continuing availability of the partic-.
ular precoinpiler for the life of project software. In
other words, the precompiler becomes part of the application
system. Precompilers are also inconvenient to use while
debugging since there diagnostics refer to the precompiler
output not the original structured source code. This requires
that programmers work with the intermediate code , which may
not be as readable.

A number of precompilers for structured code have been
developed and versions for GCOS COB’)L and FORTRAN are
available in CCTC for evaluation .

3.3 Language Independent Guidelines

The following language independent guidelines must be followed
in order to implement structured coding :

a. Every code segment should contain a single entry and
a single exit.

b. Explicit branching (GOTO type instructions) is
discouraged, but there are occasions when judicious
use will result in substantial improvement. These
deviations should be accommodated and appropriately
documented. Also, hand coding of the structured
constructs will result in explicit branches in the
implementation language.

c. In free format languages , only one statement per line
of code is permitted.

d. Indention to indicate the span of control of a
structure must be used.

These guidelines are language independent. They are
based on the structure theorem, or to make programs
easier to read.

3.4 Langu~ge Dependent Guidelines

Language dependent guidelines (section 4) provide the methods
for simulating control logic structures. In addition , section
4 also contains other recommendations which may be considered.
as guidelines . These cover such items as indentation rules,
grouping of data , data formats , etc. The most important

3— 2

rw 
- _ _ _



consideration with respect to guidelines is not that the ones
described be implemented exactly as indicated but rather that ,
for a given project, conventions be established for the
indicated areas, and then applied uniformly throughout the
e r t i r e p~ oj ect .

3—3

g*~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ 
-



1

SECTION 4. LANGUAGE DEPENDENT GUIDELINES

4.1  Introduction

This section provides guidelines for structured coding
software development in HIS FORTRAN , and ANSI COBOL . Pre-
ceding each lanaguage is a general discussion of the struc-

• turing capabilities of the language . This is followed by
a subsection which shows how the basic control locic figures
may be implemented and how the nested inclusion oiT code

• segments may be achieved using only those features ~ihich arenative to the language itself . The final section of eac~-.
language deals with other coding guidelines whose pr ir r r~ ry
purpose is to enhance readability and maintainability of tle
programs that are produced.

In the coding examples which are shown in the language sections ,
a lower case letter enclosed in parentheses (e.g., (p), (q)),
represents a conditional expression which is written in the
syntax of the language under discussion . The word “code ”
written in lower case followed by a capital letter (e.g.,
code A , code B) represents a block of code which may consist
of any valid language statements which are compatible with
structured coding concepts .

The individual language subsections are wr i t ten  in such a
way as to be independent cf each other in the assumption
that a user would reference only the language that was of
interest to him . Thus , it is necessary to repeat certain
material in each subsection.

It has also been assumed that the reader of any language
subsection is familiar with both the syntax and the termi-
nology in the language manual which describes the language .
In each language section an attempt has been made to use
the language manual termirology when discussing the various
language features.

4.2 ANS FORTRAN

4.2.1 General Comments. This manual is based on the current
WWMCCS version of Honeywell GCOS FORTRAN , which is based upon
the ANSI X3.9—l966 standard. The new X3.9-1978 standard
incorporates features , such as an IF-THE—ELSE, which improve
its utility for structured coding. However , there are no
plans to provide WWMCCS a 3.9-1978 compiler. Although FORTRAN
does not support the basic structured coding figures , it
accommodates simulation of these figures. However , problems
will be encountered in sinulating the structured figures.

4—1

- 
~~~~~~~~~ 

—
-

~~~



First , there is no automated verification of the correctness
of the simulated figures, and second , the branching which
must be used in these figures adds complexity during the
program coding and checkout phases.

The logical IF (as distinguished from the arithmetic IF)
statement in FORTRAN does not provide the IFTHENELSE capa-
bility , i.e., two possible paths , but rather allows condi-
tional execution of only one statement provided the logical
expression tested is true. The IFTHENELSE figure thus must
be simulated with a logical IF and one or more GOTO state-
ments .

The DO statement in FORTRAN is an indexing type of looping
statement which is of the DOUNTIL form since the test occurs
at the end of the loop. The capability of iteration based
on whether a condition is true or false does not exist.
Therefore the DOUNTIL and DOWUILE control figures must be
simulated with a logical IF and GOTO statements.

FORTRAN has no implementation of the CASE figure as such .
However , use of the computed GOTO along with the unconditional
GOTO statements provides a functional basis for the simu lation
of the CASE figure .

The following subsections detail a simulation of the basic
structured coding figures (subsection 4.2.2) and provide a
set of suggested language coding conventions (subsection 4.2.3)
which are intended to have a minimal impact on the FORTRAN
user. They are all intended to achieve basic goals: to
produce programs which are easy to write and debug, easy to
read and understand , and easy to maintain and modify .

In summary the deficiencies in FORTRAN which affect its top
down structured coding capability are s

a. The lack of an INCLUDE capability

b . The lack of both the DOWHILE and DOUNTIL control
structures

c. The lack of the IFTHENELSE control structure.

4 .2.  2 St ructured Coding in ANS FORTRAN. A8 mentione~4 ureviousiv ,
a basic problem in nimulating the structured coding f i gures
using the features of FORT RAN lies in the fact that there is
no automated ver if icat ion of the structured f igure ’s integrity.
Thus , an incorrectl y coded structured f igure mig}~ appear
correct in form . No solution to this problem i~ proposed for
FORTRAN figure simulation .

4—2 

.
~~~___~~~~~ ~~~~~~~~~ 

•
~_ ,_~~~~ .•

• • . - - _ #

In defining each standard figure in this section, the goal
has not been to attempt to minimize the number of lines
written ; rather it has been to strive for clarity so that
the identity of each figure can be understood without any

$ doubt .

4.2.2.1 IFTHENELSE Figure. The IFTHENELSE figure causes
control to be transferred to one of two functional blocks of
code (A or B) based on the evaluation of a logical expression
(p). Since the logical IF statement in FORT RAN allows condi-
tional execution of a single statement, provided the logical
expression tested is true, the IFTHENELSE figure is simulated
in FORTRAN using both a logical IF statement and GOTO state-
ments. The flowchart for the IFTHENELSE figure is:

The IFTHENELSE f igure should be constructed so that the
“true” conditional code (a) immediately follows the IF
statement. In order to implement this in FORTRAN , it is
more desirable to test for the negative of the condition
desired by using a “.NOT.” (a positive test would necessi-
tate the use of an additional GOTO statement). The code
structure recommended to represent the IFTHENELSE figure
is:

1 2 3 ~ ~ $ 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 78 29 30 31 32 33 34 33_ _ i _ i
t~~

_ (
~~~~~~ ~~~~~~~~~~~~~~~~~_~~~~4e~~~~~_ _ _ ~~~_ _ _ _  

-

- -  I   - 

-

_ ø ø ~.ø 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

-
_ _- _ - - - -~~~~~~~~- - - - - - -

4—3

:

Statements within the two clauses including the GOTO
terminating the f i rs t clause and the CONTINUE statement
terminator for the figure should be indented two columns.
The ELSE and ENDIF comment lines which aid in locating the
end of the functional blocks of code should be aligned with
the IF.

The ELSE in the IFTHENELSE figure is optional and if not used,
the flowchart for this figure would be reduced to:

and the code structure recommended to represent this is:

1 2 1 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 2~ 30 31 32 33 34 35

- ~~~~~~~~~ (r~~~~~~~. t~~ Ø Ø~~ - -
co4e A - - - - - -

C. E N b J F •

If code A consists of a single statement the logical IF
statement , which is a part of the FORTRAN language , may be
used. The reconinended format is as follows :

I 2 3 4 S $ 7 S 9 10 11 17 13 14 15 16 17 18 18 20 21 22 23 2~ 2~

L c o d t A

4—4

— ___

~~~ ~~~~~~~~~~~~~~~~~~~~



‘I

4 . 2 . 2 . 2  DO F~~ ures, The DO figures allow iterative execu-
tion of functional block of code (a) based on a logical
expression (p). If the test is made prior to the execution
of code A it is a DOWHILE figure. If it is made after code A
it is a DOUNTIL figure. The FORTRAN DO is essentially a
specialized DOUNTIL and its use to simulate the DO figures is
very clumsy. With the FORTRAN DO, execution continues as
long as an index is not incremented past a test value ;
however, the DO statement is a command to execute , at least
once , the statements within its range. The DO figures can

• easily and more understandably be simulated in FORTRAN using
a logical IF statement and GOTO statements .

4.2.2.2.1 DOWHILE. It is recommended that the DOWHILE figure
be simulated in FORTRAN using a logical IF statement and GOTO
statements. The flowchart for the DOWHILE figure is:

6
HK

Note that the logical expression (p) is tested prior to each
execution of the functional block of code (a) including the
f i r s t .

Although this figure can be coded using either a positive
conditional test or a negative conditional test, the positive
conditional test approach is recommended for FORTRAN imple-
mentation. The code structure recommended to represent the
DOWH ILE f igure is:

I 2 3 4 5 $ 7 8 9 10 11 12 13 14 15 16 17 II 11 70 21 22 23 31 25 26 27 28 2 30 31 32 33 34 35

- 
_ _ _

~~Q _  ~~_ c e ~
_
~. - - - - - —

_
~~~~~~~ l~~~~~~~~~~

øJ.__
~~~~_ _ ~~~~ 

- - - - - - - --  - -  - - - —

C E N b b O

4 —5

b

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

;~~~ ~~~~~~~~~~~~

The log ical expression (p) on the DOWNILE comment l ine is
recommended but could be deleted at the user ’s option.

Statements within the figure should be indented two columns
from the DOWHILE and ENDDO comment lines which aid in locating
the beginning and end of the figure .

4 . 2 . 2 .2 . 2 DOUNTIL. It is recommended that the DOUNTIL f igure
also be simulated in FORTRAN using a logical IF statement and
a GOTO statement . When looping unde r control of an index ,
however , a FORTRAN DO might be an appropriate choice (refer
to the next subsection) . The flowchart for the DOUNTIL figure
is:

___+.c’III jIIII
~~

,__,P.

Note that the logical expression (p) is tested after each
execution of the functional block of code, so that code
(a) is always executed at least once .

The recommended simulation of this figure requires that the
conditional test on the looping variable be negated as m di-
cated in the example below. The negative condition is
achieved by applying a “ .NOT.” to the desired logical expres-
sion. The code structure recommended to re~resent the DOUNTILfigure is;

; 2 3 4 5 6 1 8 9 ~~~

II

~

’T !’

~

.(f I? - •

~

E N b~~j Q - J_ : : ~~~~~~~~

The logical expression (p) on the DOUNTIL comment line is
recommended but could be deleted at the user’s option.

4—6

________- - - _
- —- b

Statements within the f igure should be indented two columns
from the DOUNTIL and ENDDO comment lines which aid in
locating the beginning and end of the figure.

4.2.2.2.3 The FORTRAN DO. The FORTRAN DO statement is a
command to execute , at least once , the statements that
physically follow it, up to and including the numbered
statement indicating the end of the DO’ s range . Since the
FORT RAN DO is essentially a specialized DOUNTIL figure , it
is desirable that specific guidelines be stated for using
this FORTRAN capability . The code structure recommended
when using the. FORTRAN DO statement is:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 73 24 25 26 27 28 29 30 31 37 33 34 35 36 37 38

II ~~~~~~~~~~
_ _ - ~2_ 00 ~~~~ ~ 5 ~~J ~~~~~~~ L’~ :~: ~ ‘•

~~~~~~~~~~~~~~~~~ ~~~ 

.

c E N b b O  ‘
.- 

. 

I

The statements within this specialized DOUNTIL figure should
be indented two columns from the DO statement and the ENDDO
comment line which aids in determining the end of the figure .

4 . 2 . 2 . 3 .  CASE Figure. The CASE figure causes control to be
passed to àne of a Set of functional blocks of code (A, B,
Z) based on the value of an integer variable i , equal to
(1 , 2, . ..,  in) . It is recommended that the CASE figure be
simulated in FORTRAN using a computed GOTO statement , GOTO
statements and a single collector (CONTINUE statement) at the
end of the figure. The flowchart for the CASE figure is:

L~I1~

4 7

-  
b

•

--
~~~~~

-

, ~~

-- - -

~~~~~~

- - -

~~~~~~~~~~~~~~
- , ~~~~~~~~~~~~~~~~~~~~~~~~~ -, - -4

Some FORT RAN compilers provide that if the value of I is
outside the range l~~i~~m, the next statement is executed.
However , with ANS FORT RAN the comp~ ted GOTO statement is
undefined if it is not within the range. Therefore in
ANS FORT RAN , i should be tested prior to entering the CASE
control logic structure. Out of range values should result
in control being transferred to th€ default code .

The default code and the “GOTO ØØn~” immediately following
the computed GOTO statement are prcvided for use with
compilers that provide for executicn of the next sequential
statement when i is - not within the range of the computed
GOTO.

Statements within the figure are indented two column s from
the CASENTRY and ENDCASE comment lines which aid in deter-
mining the beginning and end of the figure. Statements
within each case are indented two columns from each CASE
comment line.

If the functional blocks of code are identical for more
than one case, the appropriate entries in the computed GOTO
statement should contain the same number. Further, if no
action is to be performed for specific values of i. the
appropriate entries should point to the end of the figure.
Consider the following example.

~~T .O I I
~~

l71I,1I1 ;S I
~~~~~~
;;,;;, ~~~~ 7~~19 ;  7 ; .; s ;6 7 ;s ;9 ;I:2; is; ~~~~- -

~ 

- - - - - -  - -

~~~~ ~~L~~~~~~~~f l ~~~~od ~~ l
t t ’ ! _ T Q & ~~~

_ _ _ _ _ _ _ _ _ _

I
I I~ 4 o r cI~ S~e ~~

j a , d 3 ‘- j
, , ---r - j-r- - ”~~~~~~~~~~~~~~~~~

r - -~-~-~1 i 1_~L o T~~~ø~di -L- ~~- - - ~- - - - ~- - - - - - - - ’ - •
~- ’ --

~_ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1~~~~ ~~~~~~~

H-
_ _ _

~~~~~~~ j~~~~~44 1 
_ JCR5 1. E 5 I _ _ U

- _ _ _ _ _

- ~~~~~~~~~~~~~~~~~~~~ ~i :i t ~ ~iFor i=l and i=3 , the same functional block of code will be
executed and for i=2, no processing will be performed .

4—8

.—
~~~

— -~~~~
-
~~~~~~~ ~~~~~~~~~~ 

- - -
~~~~~~~~~~ I

-
‘ S

- r ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4.2.2.4 INCLUDE Capability. The capability of nesting
blocks of code within other code blocks is a necessity for
top down programming . This is most easily achieved if the
language has a compiler directing instruction such as INCLUDE
or COPY . In the case of ANS FORTRAN this type of statement
does not exist and therefore the effect of nesting may be
simulated by the use of nested CALLs of subroutines. However ,
since the linkages generated by CALL statements may be costly
in terms of overhead, two other standard alternative simula-
tions of the nested INCLUDE capability are presented. The

• first may be used if the included code segment appears in
only one place in the program. It is written as follows :

1 7 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 7~ 26 27 28 29 30 31 32 33 34 35

C I J C L U t ~E f u r % c . t i o ~~ ~I’~~~~~~ . rv e.

_ _ _ _ _ 2 T 2_ ~~~~
0 _

~~~~~~
_ 

_ 0~~~0 _ _ _ _ 
- ~~~~~~~~~~~~~~~~~~~~~ 

I
-~~~~~~~~~~~~~~~~~~ - - -  - - - - -  - - - -

C. E N b  I N C L U b I E

The function name on the INCLUDE comment should be meaning ful
enough to indicate the processing performed by the out-of-line
code. The out—of-line code then terminates with an explicit
GOTO to the CONTINUE statement. If the same funct ional
process is to be simulated as an INCLUDE in more than one
place in the program , the assigned GOTO may be used to return
control from the out-of-line code as follows:

4—9

______________ - - - - - -  -

— —v- 

— 

~
__ 

— 

—

.. 

S 

-y 
II~~ ~ 

- 1



1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 14 15 16 17 18 19 ’0 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

C. I I J C . L U b E  ~~~~~~~~~~~ no .~~ e.

- ~~~~~~~ ~ ø ~~~~~~~~~ 
G O  T o  1 ø ø ~~ 

-

- C. ~~~~NO  I N C LU b E

a

I

C. j~~J c L . t 1 b E  ~~~ c t i o P i

- -
- 

-~~~~~ ~~~~ - _ __ ~~~~~ 
J T i,

~~
_
~~~~_ _  - _ - -  

C £tJ b (N C L V b I E
a

.
— — S — — — — — — — — — — — _ — — — — — — — — —

I a

The code which begins at statement 1000 when terminated
with the following assigned GOTO statement :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23124 ~~[26 27 2~~~9 ~J~i 32 33 34

- G O T O r (ØØ i Øk ø I Ø a O I) I I
then returns control to the correct point to complete the
simulation of nested INCLUDE.

The major problem encountered with the lack of an INCLUDE
directive is related to the adverse effect this has on both
the debugging procedures. Ideally the most current listing of
a block of source code is filed in a notebook where is may be
examined by any person who wishes to do so. Tnis implies a
mechanism for storing such blocks as individual entities of
these small entities. A change can be made to any block
without the necessity of passing all existing code through
the editing routine and the filing of the revised listing
in the library does not require replacement -of other module
lisings. However , the input to the FORTRAN compiler requires

4—10

—____ - - —- —- - .— - — - -~~~~
-—-- -—,~~ ~~~~~~~~~ - — -~~~~~~~~~ - -

-

‘ -‘
— ~

- ‘S..
~~ ~

-
~~~



that all of these individual subroutine blocks be gathered
into a single sequential data set before being fed into the
compiler. It is this capability which is supplied with the
INCLUDE or COPY and the lack of it means that the program
must be developed as a single sequential data set. In order
to handle this problem various solutions outside the scope
of the language have been implemented , such as precompilers ,
linkage editor INCLUDEs, or a data set concatenation capa-
bility witi~in the operating system.

4.2.3 AddiLional Recommended Coding Conventions

4.2.3.1 Restricted FORTRAN Statement Usage. In order to
maintain structured coding concepts, it is recommended that
certain allowable FORTRAN statements generally not be
used except as required in the previous definition of the
standard program figures and summarized below. For the
most part, an attempt is made to preclude unconditional
branching not necessitated by standard program figure
definition .

The GOTO statement is used in the definition of the following
standard program figures: IFTHENELSE , DOWHILE, DOUNTIL and
CASE. The computed GOTO ~tatement is used in the definition
of the CASE standard program figure. It should be an objec-
tive not to use these statements except in those figures.

The ASSIGN and ASSIGNED GOTO statements provide an uncondi-
tional branching capability . The arithmetic IF statement
is not necessary because the IFTHENELSE standard program
figure , with nesting sometimes required ,, will provide the
same capability . Use of these FORTRAN statements should be
avoided .

The recommended use of the DO statement as a specialized
DOUNTIL , is covered in a previous subsection. Other usage
of the DO is not recommended .

The CONTINUE statement is used in the definition of the
IFTHENELSE and CASE standard program figures. In addition ,
it is sometimes required by a DO ( specialized DOUNTIL)
statement. No other use of the CONTINUE should be necessary .

4 . 2 . 3 . 2  Program Organization. These conventions provide
for the organization of a FORTRAN source program into a set
of segments for compilation. Any FORT RAN program requires

4— 11

—p .- — ——- -—- -  — — — — - 
,— —--- - —.

~~
.- - — —



a certain ordering of the statements within the program.
A suggested further restriction to that ordering for the
sake of readability, clarity, and consistency appears below .

a. If this is a subprogram , the first card must be a
FUNCTION , SUBRO UTINE , or BLOCK DATA statement.

b. Any COMMON statements, each followed by all type ,
DOUBLE PRECISION , and EQUIVALENCE statements related
to it follow. No dimension information is to appear
on a COMMON statement. The COMMON statement will be
used only to declare the order of arrays and
variables within the COMMON. Blank COMMON is to be
declared f i rs t , followed by all labeled COMMONs in
alphabetical order.

Any explicit specification (type) statements and
DOUBLE PRECISION statements will be arranged in
alphabetical order of the variables or arrays within
each of the types. They will be defined in the
following order: COMPLEX, DOUBLE PRECISION , REAL,
INTEGER, and LOGICAL. All dimensioning information
should be included on the type or DOUBLE PRECISION
cards. All variables or arrays should be explicitly
declared , and the DIMENSION statement should not be
used in place of a type of statement.

Following each type or DOUBLE PRECISION statement , any
EQUIVALENCE statements required for that type statement
are included. A blank comment card should be used before
and after the EQUIVALENCE statements to set them off from
the surrounding definitions.

c. Once all COMMON declarations are made, the program
local declarations are made using the same
conventions .

d. Following all program local declarations, all EXTERNAL
declarations will be made .

e. Any DATA statements for program local arrays and
variables follow .

f. All FORMAT statements follow.

g. Any statement function definitions come next and
complete the nonexecutable code .

4— 12

• •, 

‘

-— -— - --- -—- •-- —- -~~~-- --~~~— - --- j - - — —~-- , - ~~~~~~~~~~~~~~~~~~~~~ —- --—r ~~~-
- .

- 
• -— .  

.. it -



h. Segments containing executable code follow in order.
The last segment must contain an END card .

i. If desired , subprograms may follow as part of a
multiple compilation . The organization of each
subprogram should follow the rules given above.

4.2.3.3 Comments. Comments should be used to enhance the
readability and understanding of a program (e.g., to define
variables or their special settings). In general, when they
are used they should be grouped together as a prologue to
the code segment. If they must be interspersed within the
code, they should be inserted as a block which begins in
a column near the middle of the page ( e . g . ,  column 35 or 40)
so as not to interfere with the indentation and readability
of the program proper which may be scanned near the left
margin. Blank comment cards should be used when they
enhance readability .

4 . 2 . 3 . 4  Statement Numbering. As much as possible , state-
ment numbers are to proceed from lowest to highest as a
program is read. It is recommended that statement numbers
be four digits long, be placed in columrs 2-5, and be
incremented by 10 rather than be consecutive .

4.2.3.5 Continuation Cards. ANS FORT RAN permits up to 19
successive continuation cards per statement. The continuation
column should he used to indicate the order of the cards.
This may be done by placing a numeric character in column 6
(the continuation indication column) in ascending sequence
(i . e .,  1-9) and if additional characters are necessary,
using in order the alphabetic characters A-J.

The body of the continuation card should be coded so as to
enhance the readability of the program unit. In the following
subsections are some suggestions in regard to special cards ,

• but, in general, no continuation card should contain informa-
tion to the left  of the statement identifier on the first
card.

4 . 2 . 3 . 6  Statements. Each statement should begin in an
even-numbered column. Nonéxecutable statements should
begin in column 8. If the program is a subprogram , the

• FUNCTION , SUBROUTINE , or BLOCK DATA statement should begin
in column 8, and the corresponding END statement should
also begin in column 8; in these cases , the first executable
statement will begin in column 10. Otherwise , the f i r s t

4—13

I ~~~~~~~~~~ 
- - - 

~~~~~~~~~~~~
“

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
‘ .. -

- .-- _!~~ — - 
—•. • .~ _~

-a
~~~~- 

- -
~~

‘ -

executable statement of a program should begin in column
8, as should the END card . Succeeding executable statements
are indented according to the coding examples in the stan-
dard program figures section and the rules given below.

4.2.3.6.1 Assignment Statements. If a statement is
continued , the second and following lines should be indented
by six columns. For example:

Ii 2 3 1 4 IS 6 7 11 ,tio II 17 13 14 iS I6~ I7 II 19 7071122 23 24 261?Ii 27 78129130 31 32133 34 35 36 37 38 3914014147 4 4 4 4

I n ! ! L Ico Nv~~4 *(2 I. Ø*~.icIP A b 1sc T)) * F GAI N) /
‘ I 1 I (SEl l S~Jo~~RT sI-r1A*RIe R t M ~E *R R T I o)

In a continued assignment statement, the first card (and
each card which will be followed by another continuation
card) should have an operator as the last character. As
much as possible , all parenthetical expressions should be
on a single card . In no case should a left parenthesis be
the last character on a card which is to be continued .

4 . 2 . 3 . 6 . 2 COMMON Statements. The COMMON card will beg in
in column 8 with the identifier followed by a blank in
column 14 and a “/“ in column 15. The next six columns
are reserved for the label which will be left justified in
this field. Column 22 will contain another “/“ and
column 23 will contain a blank . If blank COMMON is desired ,
code the slashes but leave the label field blank. Commas
will appear in columns 30 , 37 , and 44. If a continuation
card is necessary , a comma will appear in column 23 on that
card. The name s will be lef t justified within each field.

4 . 2 . 3 . 6 . 3 Type Statements. Dimension information for each
array is to be contained on a single type card. A card
will contain one and only one name. A type statement may be
continued , thus allowing 20 names to be declared for each
statement.

The type statement will be coded beginning in column 8. The
name should begin in column 16. If it is a continuation
card , a comma should be inserted into column 15. When using
a DOUBLE PRECISION statement, the name should begin in
column 25. If a cOntinuation card is required, a comma should
be inserted into column 24.

4.2.3.6.4 FORMAT Statements. The FORMAT identifier will be
coded beginning in column 8. The fi rs t parenthesis will

4—14

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
- — I , 

~~~~~~~~~~~~~~ 
_ _ _ _ _ _ _ _ _

• ~~~~~~
- .~~~~~~

- ~~~~~~~~~~~ — - —. • ‘ ‘-‘S-.~~~~~
-
~~~~

- 
~~~~~~~~~~~~~~~~~~~~


appear in column 16, and the format information itself
begins in column 18. As much as possible , a position code
and its associated format code should stand alone on a card.
Continuation cards should be used liberally. For example:

I 7 3 1 5 9 ~ S 9 1 0 1 1 11 13 14 19 1 17 11 1,20 21 22 23 2 15 2b 77 71 30 31 32 33J34 35 39 37 31 39

~ H’fl ~f~o{vflR~14 I ftTThH ijz~s~x~ s 1 ~t~
u~

4.2.3.6.5 READ or WRITE Statements. In all cases a READ or
WRITE statement should have its file reference contained in
a variable . The use of hard coded file references is dis-
couraged from the standpoint of visibility and parameterized
coding. The variable should be contained in a common block
and initialized in a block data.

The list portion of the READ or WRITE statement must be
expressed in as simple terms as possible. Liberal use of
blanks and continuation cards is encouraged in order to
increase readability .

4.2.3.6.6 IF Statements. Multiple conditions in the
predicate of an IF statement should occur on separate
cards , with an operator occurring as the final item in
each card to be continued . For example:

3 3 4 5 6 7 8 9 10 11 12 13 14 15 IS 17 18 19 20 21 22 23 24 25 26 27 28 21 30

2 • X .~~~Q . J

Notice also that the GOTO statement follows the closing
parenthesis.

4—15

-~~~~~~

-
~

-

I

~~~~~~~~~~~~ ~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~ ~,



4 . 2 . 3 . 6 . 7  DATA Statements. Only one variable may be
specified on a DATA statement card . The DATA identi f ier
will be coded beginning in column 8. The variable name
will be coded beginning in column 14. The slash indicating
the beginning of the data will be coded in column 20. For
example:

[1 7 3 4 5 5 7 8 9 10 11 12 13 11 15 15 17 18 19f 20(21 22 23124 25 26 27 28129{30j

[ D A T A  Y E A R  ] / J 1~~115/ 1 1 1

4.3 ANSI_COBOL

4.3.1 General Comments. The two statements IF... .ELSE
and PERFORM, which are part of the COBOL supply the
basic structuring capability of the language. The first
represents the IFTHENELSE control figure while the PERFORM
permits the looping required by the DOWHILE/DOUNTIL
construct. In addition, the GO TO.... DEPENDING ON is
readily adapted to the simulation of the CASE statement,
the COPY assists in top down programming, and the language ’s
SEARCH statement recognizes the potential utility of such a
control logic structure. However, even with all of these
features, the language does have certain deficiencies in the
implementation of structured coding technology.

For instance, because of the way the period delimiter
affects the syntax of the language, it is not possible to
implement the following flowchart using only the COBOL IF
statement without duplicating the sequence of statements in
code B or duplicating the test on (p):

4— 16

I •
~~~~~ 

— —-. ,--- -
~~~~

-— — - • ~~~-,- — -- - — - •- —~ • —w- - - ._ __j_ ~~. 
- • ——--—------—--- •

• - - t ~~~~~~
-• -

~~~ - .~~ 

-

-j- ~~~~~~~~ ~~~~~~~~~~~~

Three alternatives, shown in subsection 4.3.2.1, indicatt~
how the processing may be achieved. However , with the use
of a specific delimiter such as an END-IF , the problems
encountered in implementing the above flowchart could be
overcome.

The looping capability is achieved in COBOL with the PERFORM
statement. All such loops are of the DOWHILE type since the
looping condition is tested prior to execution of the code
within the loop. This statement permits repetitive code
execution under the following conditions. First , the pro-
grammer can indicate that the loop is to be executed a
specified number of times. Second, an indexing type of loop
can be requested with the PERFORM VARYING option and
f ina l ly the PERF OR MUNTI L option exists which is equivalent
to the structured coding DOWUILE control figure . The selection
of the word UNTIL to indicate ioop termination conditions in -
COBOL is an unfortunate one since in structured coding termi-
nology not only does it imply a different ‘flowchart but the
semantics of the looping control is the negative of the
structured coding DOWHILE. Thus (ignoring temporarily the
flowchart differences between WHILE and UNTIL), the statement
“perform a loop WHILE something is true” translates semantically
to “perform a loop UNTIL something is not true.” Two options
are open to the COBOL programmer. One is to simulate the
DOWBILE by negating the conditional logic as follows :

PERFORM....UNTIL (NOT p).

4-17

_ _ * ‘- -‘--- - .- •-

LT~~ ~
- ~~~~~~~~~~~~~~~~~~ ~~~ __-i__

The second is to continue to think of the looping condition
in the UNTIL logic to which the COBOL programmer is accustomed
but to insure that it is understood t•hat the use of the word
“ U N T I L ” doe s not guarantee execution of the PERFORMed code
at least once. For the experienced COBOL programmer it is
probable that the latter course is the one which is less
error prone.

The COBOL DECLARATIVES SECTION , if present, must appear at
the start of the PROCEDURE DIVISION. The code in this
section is invoked asynchronously by certain conditions
which cannot normally be tested by the programmer. These
conditions include input/output label handling procedures ,
input/output error checking procedures , and report wr i t ing
procedures. Since these blocks of code are out-of-line ,
they involve a transfer of control which is invisible to the
programmer. Such interruptions of sequential control are
usually undesirable in structured coding . However , because
of the utility of the DECLARATIVES SECTION , no attempt has
been made to restrict its usage, particularly since ANS COBOL
requires that control automatically return to the statement
following the one which caused the asynchronous interrupt.

The COPY and PERFORM statements, in spite of their limitations,
are helpful in implementing top down programming . It is essen-
tial in top down programming to have the capability of nesting
relatively small blocks of code within other such blocks.
However, the COPY compiler directive cannot fulfill this
function because it is limited to a single level (i.e., code
which is copied cannot have a COPY statement within it).
Therefore , it is necessary to simulate this requirement with
PERFORM statements since these can be nested . One method of
simulating the required nesting is not to permit a COPY state-
ment in any segment which is invoked by the PERF ORM statement.
Then, after the top module is coded , COPY statements may be
used to direct the compiler to include in its compilation
the various PERFORMed paragraphs and thus overcome the limita-
tions on the nesting of COPY statements. It should be noted
that this type of organization implies that the modules which
are cop ied , are located in a l ibrary system of some sort.

Finally COBOL as with many higher level languages , has a
free format syntax. This permits the programmer to write
statements in a continuous prose format instead of requiring
the more desirable format of each new statement starting a
new line of code and thus enhancing the readability of the
structured code. Finally, in the examples which follow, the
parentheses which enclose the conditional expressions are
optional.

4—18

— - — - b

- •~~~ - -—
-

~~~~~~~
-- - _ i t -  

~~~~~~~~~~~~~~~~


In summary , the deficiencies of COBOL which affect structured
coding are :

a. The l imitation of the IF. . . .ELSE statement which
restricts the nesting capability

b. The lack of a DOUNTIL capability

c. The free form of the language

d. The lack of specific delimiters such as END—IF , END-READ
etc.

e. The inabi l i ty to place the repetitive code of a looping
operation in-line

f. The limitation of the COPY statement to a single level.

It must also be noted t:-~at the COBOL PERFORM . . . UNTIL has a
meaning opposite to the DOUNTIL. Although not a language
deficiency , this can be confusing to many programmer~ .

4.3.2 T~p Dowti Structu~:ed Proq~amn~ing in ANS COBOL

4.3.2.1 IFTHENELSE Figure. The IFTHENELSE figures causes
control t~ be transferr~~~to one of two functional blocks ofcode (A or B) based on :he evaluation of a logical expression
(p). This is identical to the manner in which the COBOL
conditional statement operates to this control logic structure
does not have to be simulated . The flowchart for the
IFTHENELSE figure is~

4—19

• - .

~
- -

‘ .

-I

The implementation of this control sti ucture using the
conditional statement is as follows :

1 2 3 4 5 5 7 8 9 1 0 1 1 12 13 14 15 1S I7 1S 19 20 21 fl 23 24 25 26 27 28 21 30

~

c o d t A
E L S E

c o at e .

The ELSE in the IFTHENELSE figure is optional and if not
used , the flowchart reduces to:

-

~~~~~~~~~~~~

Since the ELSE is also optional in the COBOL conditional
statement, the code becomes:

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

In order to overcome the nesting limi tation resulting from
the flowchart discussed in subsectiOn 4.3.1 (page 4-17) the
following options are available:

4—20

— — -_ -—--~~~ -. .~~~-.-.--.~~~~-—-. —
_

-
,~~~~~~~~ ,_

-
-

- .- ‘
-‘
-

-
‘ - - —--

~~
- ,

- ~~~~~~~~~
r~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

3 4 5 6 7 8 9 10 11 17 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

~iLI !L ~~~ _ _ _ . ! ~~~c q ~ - -
H c o d e . A

- - - - -- -- - --

c o d e . B

T~~~~~~~~~~~~~~~~~~E L S E
- — - - - -- - - - -

-
- - -liii II IIIII~~~ c I - - -

c o d e C .

J I- c o d t b

(a) Duplicate Code B

I 7 3 4 5 C. 7 8 9 10 II 12 13 14 15 IC. 17 1R 19 20 71 22 23 24 ~~ 76 27 28 /~1 30 3 1 3~T33 ~

c o 4 t ~~~~~~
.

~

� _ _ _ _ __ _ __ _ _ _ -

c o 4 e B
E L S E

c o d e . c .
- ;

_ _ . I

(b) Duplicate the Outermost Test on (p)

4—2 1

- ~~~~~~~~~~~~~~~

1 7 3 4 5 6 7 8 9~~~~~~~~~~~~~~~~ 15 16 17 1819 20 21 22 ;3 6 2 7 28 29 3O 31 32 3~~~~~3S

- - - - - - --- - - _ - _ - - -

- -
P E R F O RM N E S T~~ D) F

E L SE

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ c o d e  D.

N E S T Eb -  i F .  

- -

- _ - ‘ !. c~~~ - - 

— 
c o d e .  -A .

c o c 4 e .  6 .

(c) Perform the Nested IF Statement

The decision as to which option should be adopted as a standard
is not a clear cut one and therefore no one form is recommended
over any of the others. In the case of the simple flowchart
used in the above examples the decision may be based on con-
siderations of space and program execution time. However , the
above example is an extremely simple one . When these types of
control structures occur more than once in more deeply nested
code , none of the options avoid the difficulty of becoming ‘ -
considerably more complex. Therefore , each case must be
evaluated on its own and the one selected should be the one
which is the most readable and understandable. Indentation
should be as indicated in the examples. As may be noted , code
is indented beneath the IF and ELSE in order to emphasize the
span of control of these verbs. Since no unique terminator is
available , the end of the figure is indicated the the start of
a new code block in the same column as the IF and ELSE.

4—22

fT ‘

~~~~~

-

~

-;

~
,

~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - 

:-: . 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- -

4.3.2.2 DO Figures

4.3.2.2.1 DOWHILE. The flowchart ~or the DOWHILE controlst ructure , which is a looping operation in which the test
for loop termination precedes the code block , i~ as follows :

DO WHILE

All of the loops which are ini tiated by the PERFORM are of
the structured programm ing DOWH ILE fo rma t and consequent ly
no simulation is needed. The statement is w~ t-ten as:

113[1146J6 ~ I 9 tO II 17113 I4~ IS 16 17 19 ‘9 20 21 27 23 2 2~ 21 pf,s 7~~~)O 31 37 ~ ii 3’~ 36 37 I)~~39 4 0 4 1 4~J_43~a 4 T 4S 116 4 7 4 1

Lii P1E R1F 0 R M P~~RA G ~~A PIH - I ,JA M U~~T~I!L
(~1)T. Ii

The conditional logic of the DOWHILE requires that the loop
be terminated on a “false” condition so that in order to be
compatible with structured programming definition , the test
should read UNTIL (NOT p). However , since the flowchart of
the PERFORM statemenL is that of a DOWHILE , the artificial
negation of the termination logic in order to override the
semantics of the word UNTIL is not necessary and if (p) were
a complex condition , this negation could , in fact , be confusing .

The DOWHILE with indexing is also a part of the language and
is written as:

4—23

______ - -

~~~~~~~~~~~~~~~



~
f tI  ~~~~~~~~~~~~~~~~~~~~
Note that while the indexing is varied automatically, the
decision as to when to terminate the loop is still under
control of the UNTIL rather than whether the indexing has
reached some limit.

Finally, the option exists to PERFORM a block of code a
specified number of times. This is written as:

I 7 4 i~ 0 3 ~1 10 II I?~ l) ‘4  t~~ ‘6 11 II II 70 71  22 23’24 75 26 27 39 39 30 31 32 33 34 35 36 37 39 41 42 43 44 45 46 47 4*

_ _ _ _  
P t E R F O R M  ? A R R I G R A P H - N A M E  fl T I M~E S .  

-

Since, for all PERFORMS, the repetitive code must be placed
out-of—line , there are no indentation requirements for these
statements. However, for the indexed PERFORM (which can be
written with up to three indexing variables) , it is suggested
that the format of the example shown in this subsection be
adopted where words which control the indexing are indented
further to the right than the UNTIL so that the conditions
for loop termination are emphasized .

4. 3.2.2.2 DOUNTIL. The DOUNTIL control structure is one in
which the looping criteria are tested at the end of the loop
and t hus the code block is always executed at least once.
The flowchart is as follows:

4—24

— -- — 

.- I ~~~~~~~~~~~~~~~~~~~~~~~



Since all PERFORMs are of the DOWHILE control logic , the
DOUNTIL must be simulated. The recommended format is either:

[u
I i4 b J 

J 7 j  

_ _ _ _ _

or
I 1 f l’ T 111i J 1-:T-- -? J T f T ’ T V ’ .lTr ]IT .T 1 j [~1~~ ~

••-
(

~~~T~~~~’ T  r - r ’ -1  I t T 1 ~~~~ 1 1 1 - 1 ’l  r- t r-~
-
~

— —
~

- - r - 1 --r-i-~ --t- -. -.
L. -. M c v E O~ F C~u O ~ ~ro i.. o o P ~s c A PE , ,

- . . .
-I ~~~~~~~~~~~ ~~~~ : - - -

(~I~~ 4~~~~~ (L L o Q e — c~~-~ -o~,4 .
-

— I i _ • •
~

••• _ _ .

: I1_~
__
~ 1_ 1 :. • L I • l t . : ~~~~~ -4— -+ 4—~— - - ~--4_~

- -
P~~c & ~~~ 9 H - W ~~mE J . -

- CF H I !
-

- ~Y1O V E OW CO 0~~ 1~~ ~~p- C P ~~ E.

~

—.-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~1 J i . I ;  
_ _ _ _ _ _ _ _ _

The latter case is most useful with a PERFORM tha t uses he
VARYING option . However , the data item or index which I::
automatically varied by the execution of the PERFORM state-
ment must never have its contents changed through the execution
of a statement within the range of performed statements.

4.3.2.3 CASE Figure -
The CASE figure causes control to be passed to one of a Let
of functional blocks of code (A,B,...,Z) based on the value
of an integer variable. The flowchart for this figure is :

U

4—25

I~~T ~? 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The CASE statement is not part of conventional COBOL and must
therefore be simulated using the GO TO.. . DEPENDING ON state-
ment. This verb permits the programmer to select one of a
set of procedures depending upon the value of an integer
whose range is from 1 to the number of procedure names listed
in the statement. For any integer outside these limits the
GO TO statement is ignored and control passes to the statement
which follows it. This means that default code , if required ,
should immediately follow the GO TO. . . DEPENDING ON statement.
At least one paragraph name is required. The simulation is
as follows:

~ 7 s J s ,o ,
~ 3 74 ~G I? 19 19 20 ~~ ~~ 2i~~ 9 7 30 31 34 36 36 37 39 39 4 41 4243 44 46 4647 49 49 50

C~~~5 E - P A R R G f l R P H .

6 0 10 C h S E- i C .A S E - Z . . D C P E N D I N - & I .

ac . c -c. i& i $- c o de . -

G O TO C A $ E - P M R A G R A P N - E 1 J D .

C~~~ 5 L. - -L
_ _ . Ij: _ ._ _

~,O TO C A S E - P A - R A G R A P H - E A b

C A S ~
-

c..~~e 5 . -

C A S E - H -

c o d e Z . -

:F% S E - P A R A G R F ~P~~~- E Nb .

i i :iIi ~.~’~ . ili iii ::ii :z ij ::

The above code must be placed out-of-line and is invoked
by an in—line PERFORM statement as shown below: -

F’ ~~~~~~ II IS 4 17 II 79 30 ~~ 31 79 26 27 2IJ2~~30{2I 32 ‘~1’~
33J39 31J31 39 4~~4I ~~~

46 4!1449019432!53 94

L P E ERFORM C A IS &-PARA IGI R IA P$ 1 TIH AlU C1A 5 e1- 1PAR A ~1RIAfrJH-EW b.

4—26

— ____ -- - T1~
-

~~~~~~~~~~— -. -

- — ~~~~~~~~ i’~~~~~4’



note that the PERFORM.. .THRU option of the PERFORM statement
must be used because of the presence of the paragraph names
which are used to identify the various case statements.

4 . 3 . 2 . 4  INCLUDE Capability. The capability of nesting blocks
of code within other code blocks is a necessity for top down
programming. This is best done when such blocks of code are
stored and can be accessed by the COBOL COPY statement as
separate members in a library system . However , it should be
noted that this requirement is a compiler dependency and may
not be possible for some ANS compilers. Since the COPY does
not permit nesting , it is necessary to simulate this require-
inent with the use of nested PERFORM statements. The blocks
of code which are PERFORMed are presumably stored as separate
members which are easily accessed on a direct access device and
are referenced for the COBOL compiler by means of COPY state-
ments. This means that no COPY may appear in any block of
code which is invoked by a copied PERFORM. With this technique
the top level of the PROCEDURE DIVISION looks as follows:

I 7 3 4 3 4 I S 9 70 71 ¶7 ¶3 ¶4 l5~l4 ¶1 19 19 70 21 22 23 74 76 1 73 39 7 30 37 3? 33 34 3~ 26 37 38 39 II 

_~~~~~~~! V ! H Q t J .
~~~~~~~~ - _

- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ - _

-

P E f FO RM N E S T E b - p A R F~G R A P H - L

~ ode 8.
-

S r o P RU~~.

~

W E S T E b - P R R ~~G R F % P H - 2 [.

- _

Note that the COPY statement references library names, not
paragraph names. “NESTED-PARAGRAPH--i” is a separate block -

of code which the COPY statement can access and may take
the following form:

4—27

_____ -

1~

7 9 9 tO II 3 73
I4j Is ~~

~~

30 21 72 73 34 75 7Ii177 79 130 3Ij32~
33 34 35 36J3) 3 9 3 9 4

E J : o d e D

N E ST e D_ P A I A 6 A P H - ~~2 .

“NESTED-PARAGRAPH-2” is a sequence of statements similiar to
those contained in the above paragraph within which it was
invoked and it may contain other PERFORM s for deeper nesting .
The COPY statements following the top paragraph insure that
the compiler is aware of all the segments of code which
comprise the total program. Furthermore , since no PERFORMed
paragraph may contain a COPY, there is no danger of violating
the nesting limitation of this verb.

4.3.3 Additional Recommended Coding Conventions

4.3.3.1 Restricted ANS COBOL Statement Usa~e. In order to
preserve the concept of structured programming , it is
recommended that the general usage of those statements in
COBOL which permit changes of sequential control be restrict-
ed to an exception basis only, unless such statements are
indicated in the standards in subsection 4.3.2 as a
simulation requirement for the basic control logic f igures .

4.3.3.2 Program Organization. The structure of a COBOL
program is such that many of the rules for program organ-
ization have been predefined. For instance, all data must
be specified in the DATA DIVISION. Furthermore, within this
section, the formal rules which define permissible hierarch-
ical data structures are sufficient to preserve the read-
ability requirements of structured programming. However,
within the PROCEDURE DIVISION, (with the exception of the
DECLARATIVE SECTION) the rules of COBOL permit the ordering
of the PERFORMed code blocks to be completely flexible.

For a development process in which no random access
li brary exists , the ordering of the segments of PERFORMe d
COBOL paragraphs in the procedure division is more critical.
This is because the source listing under this condition is
a single sequential data set. At present, the suggested
sequence is initially by nested level for two or three levels
(depending on the program’S complexity) and alphabetically
thereafter.

4—28

PERFORMed paragraphs should be separated from the main body
of code , and from other PERFORMed paragraphs, by at least
two blank lines. Logically noncontiguous paragraphs (other
than those used in the CASE figure) should be separated by
at least one blank line.

4.3.3.3 Comments. One of the primary intents of the
developers of the COBOL language was to produce a self-
documenting language. When this is coupled with the
discipline of structured programming the resulting programs
should be even more readable. Experience has indicated that
well written COBOL programs contribute toward meeting this
objective. Therefore , it is recommended that the use of
comments be held to a minimum. When they are used , they
should be organized in such a manner as not to interfere
with the readability of the program itself and should be
grouped immediately before major subdivisions of code such
as record description entries, Procedure Division paragraphs ,
etc. This may be done by such devices as using blank lines
to insure that the comment stands apart from the program
proper and starting and concentrating the textual commentary
in the middle of the pages beginning in column 35 or 40.

4.3.3.4 Indentation and Formatting Conventions. Variables
and structures defined in the DATA DIVISION should be
arranged in a meaningful order. This order could be alpha-
betic , by class such as the days of the week, or any other
class format. A suggested set of indentation rules for
data items is as follows :

a. General Format. All level 77 and 01 variables should
begin their level numbers in columns 10-11 and names
starting in column 14. The PICTURE clause should
be between columns 32-45, depending on the length of
the longest variable name . All other clauses used
should follow the PCITURE clause with normal spacing .
If more than one line is needed for a variable ’ s
definition, the second and succeeding lines should
be indented from the PICTURE clause as follows:

4 — 29

- ~~~~~~~~~~~~~~~~~~~ - - - -“ - - - - - - --~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ _ . ~~~ —
-

~ ‘~~~~
sç W

b. Structures. Each successively lower level in a
structure should be indented four columns from the
next higher level. Level numbers should be incremented
by more than one and should precede each variable name
in the structure on the same line and two columns
before it as follows:

• 1 70 11 77 13 14 IS 76 77 79 79 20 21 77 21 39 77 39 3 3 II 37 333 35 34 37 3$ 394 4 42 4 44 45 46 47 4$

O L E M P L O Y E E - ~~~ C O~ b .

~~~~~~~~~~~~~~~~~~~~~~~03  M I I D L E  P I C T U R E  X .
- 

03 L I S T  P I C TU R E  x(2 0) -

o ?.-~ ~ A D D c ç s .s~ - . . . - - - - - - . . . . - - - . . - -

: : I I I : I . . _ o3 I.s±~€~ r. .?LS ~~~~~~.~~~!~~~~: . _ _

When conditioned-names (level 88 items) are used they
should be indented and written with all value clauses
vertically aligned.

• * 70 II 77 13 74 IS 16 Il II 1$ 70 21177 23 2 35 

~‘1’~ 
2s 30 31 32 33 34 37 3$ 394  4 47 43 44 45 46 474$

03 ftvrE- [coDfE PI~
1C .TURE ).

~~~2 N E W~
-

rIP E V A L J U E ‘
8

’ -
- t~ O - L bf !P1 v &..1u~ ‘a ’ .

The indentation recommendations for the structured coding struc-
tures which appear in the PROCEDURE DIVISION were previously
specified in the section where they were described . When
programming the code blocks which represent the SEQUENCE in
structured programming, each COBOL statement should start a
new line. Any statement not subject to indentation rules
starts in the same column in which the statement above it
started. Only one statement per line is permitted . If any
statement must be continued on the next line, .the continued
portion should be indented one column so as not to confuse it
with structuring indentation.

1011 11 3 4 5 1 6 7 I S I9 2O ?I 27 7~~~ 4 7 9 7~~ 3 7 7 $ 7 ~ 3 3 7 3 7 4 3 5 34 37 3• 314 4 47 43 4 4 4 4 i7~~ 5~~9 S ~~ 5l 37 $3 S4 6

~~~O V E  n o u q  T Q j LA s r - s 4 o u R .
A D D  J. T O  H O U JP .

• - ~~4T! r~~~~~~~~~~~ M 4 T s  
- ( ? ~~-L! Y 

- ~~~~~~~~~~~~~~~~~~~~ ~ -~ E ~!.
. . ! W 4 ! ! s I D ¼A H4!Ifl. 

- - 
- 

_ • [ b

. 
~~~~~~~ ~~~~~ . : - .  ~ - - 

-
— - -

- - . - ~~~~~~~
.
.

- -
-“~~~~~~

.- ;-4~~~~~~~~~~~~~~
_ - —

-
I

REFERENCES

1. Boehm, B. W., “Keynote Address: The High Cost of
Software,” TRW-SS-73—08 , September 1973.

2. Boehm , B. W., et al , “Structured Programming : A
Quantitative Assessment,” IEEE Computer, June 1975 ,
pages 38—54.

3. Boehm, B. W., “Structured Programming : Problems ,
Pitfalls , and Payoffs,” TRW—SS—76—06 , July 1976.

4. Dijkstra, E. W., “Notes on Structured Programming ,”
in Structured Programming, 0. J. Dahi , E. W . Dijkstra ,
and C. A. R. Hoave , Academic Press, London , 1972.

5. IBM Corporation , An Introduction to Structured
Programming in COBOL, Publication GCZO-l776-O ,
November 1975.

6. Kessler, Marvin and Tinanoff , N., “Structured Programming
Series (Volume I), Programming Language Standards,”
RADC TR—74—300 , Volume I, 15 March 1975, AD A0l677l.

7. Mills, H. D., “Mathematical Foundations for Structured
Programming,” IBM Federal Systems Division Technical
Report FSC 72-6012, February 1972. -

8. Smith, Paul , “Fortran Code Auditor - User ’s Manual ,”
RADC-TR—76-395, Volume I, December 1976.

5—1

~ 1

1’ —-
~~~~~~

- - — -r -
~ 

-____________ 
— — ---- 

~~~~~~~~~~~~~ 
,

~~.7..
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ .- ~~~~J~~~~~~~~-_



DISTRIBUTION

Addressees Copies

CCTC Codes

d U o  1
CilO 40
C124 (Reference & Record Sets) 3
C124 (Stock) 6
C126 (Library) 2
C200 2
C300 . 10
C400 10
C600 2
C700 8

DCA Codes

lOlR 1
205 2
630 2

Other

DCAOC/N300  . 2
DCEC/R800 2

Defense Documentation Center , Cameron Station ,
Alexandria, Virginia 22314 12

135

6— 1

____

1~ —- -
~~~~

- -
. -

—
~~~~7.7.. ~~~~ ~~~~~~~~~~~~~~~~ 

.1 ~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~l



I

UNCLASSIFIED —

SECURITY CLASSIFICATION OF THIS PAGE (WIt.., D.t ‘&N.,. ~~ __________________________________

• D~~DADT nIWS I IAE 6J TAT IAS DAG E READ INSTRU CTIONS
~~~~~~~~~~~ ‘ ‘ ‘ “ E3EF ORE COMP LE TING FORM

1 REPORT NUMBER 2. GOVT ACCESIION NO 3. REC IPIENT S CATALOG NUMBER

TM 185—78 ____________________________

4. T I TL. E (..ad SubUlt.) 5. TYPE OF REPORT 6 PERIOD COVERED

Guidelines for Structured Coding ________________________
6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) S. CONTRA CT OR GRAN T NUMBER(.)

Captain John R. Scott

S. PERFORMING ORGANIZAT ION NAM E AND ADORE 3 70. PROGRAM ELEMENT, PROJECT , TASK
AREA 6 WORK UNIT NUMBERS

I I . CONTROLLING OFFICE N AME AN D ADDRESS 12. REPORT DATE

Command and Control Techni cal Center 1 September 1978
The Pentagon ii. NUMBER OF PAGES

Washington , D.C. 20301

51 pages
14. MONITORING AGENCY NAM E & AODRE$S(lf ff11. .nS 1.-c., Cc.tioUSng OUt a.) IS. SECURITY CLASS. (of tAt. report)

Unclassified
IS.. DECL AS S,F ICAT ION/ DOWNGRADING

SCHEDULE

74. DISTRIBUTION STATEMENT (of tAt. Raport)

Approved for public release; distribution unlimited.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
17. DISTRIBUTION STATEMENT (of IA. .b.tracl .n,*. .d In bleak 30, II dlIf.r. ,it f~nn, Report)

IS. SUP~~t.EMENTARY NOT ES

1k, K EY WORDS (ContI’n.. on t.vir.• oW. If c.c..aa r .Id Identity ~~ blsck ,~~~bc.)

~~ ABSTRACT (C.a4~~~~ 
— M ...i .~~ ~~~ ~~~ *~~.J(S ~~ We*k ~~~~~~~~~~

This manual provides guidelines for DCA/CCTC personnel wri t ing
computer programs using structured code. The guidelines are for
handcoding of structured constructs in FORTRAN and COBOL, with
additional instructions on module sizing and formatting .

DO ~~~~~~~~ 1473 £OIVI O N OP I NOV U I$ OUSO9.(TE 7—i UNCLAS SIFIED
~~~V!IIBtTY ri 8’q,,, raT,f)N OF T,419 WA GE (IW~sn 0.4. £nt.c.d)

- - — - _______ - - - —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

— 
-i~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


